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Abstract--Recursive feedback is defined and discussed

as a framework for development of specific algorithms

and procedures that propagate the time-domain solution

for a dynamical system simulation consisting of multiple

numerically coupled, self-contained, stand-alone subsys-

tem simulations. A satellite motion example containing
three subsystems (orbit dynamics, attitude dynamics,

and aerod.ynami'cs) has been defmed and constructed
using this approach. Convention_ solution methods are

used in the subsystem simulations. Centralized and dis-

tributed versions of coupling structure have been ad-
dressed. Numerical results are evah/ated by direct com-

parison with a standard total-system, simultaneous-

solution approach.

I. INTRODUCTION

Digital simulations of dynamical systems are often built

by constructing algorithms that solve a set of differentia/-

algebraic equations that mathematically model the system.

The equations are solved numerically, as a single coupled
set, using one of several standard or modified numerical

integration methods. In some cases, software is written in a

language such as FORTRAN or C to define the equations,
and an existing or slightly modified ordinary differential
equation solver, perhaps a Runge-Kutta implementation, is

employed to perform the integration. In other cases, an in-
house development such as Marshall System for Aerospace

Simulation (MARSYAS) or a commercial off-the-shelf

product such as MATLAB®/SIMULINK ® is used to act as

a higher level facilitator of what is ultimately a mathemati-

cally similar approach.

System-level digital solution of coupled "'stand-alone"

dynamical.simulatious is a fundamentally different aPl_roach
to system simulation, and fundamentally different numerical

procedures are required. Reeursive feedback is a conceptual.
method from which a family of appropriate algorithms,

processes, and specific numerical procedures can be de-
rived.

Coupled subsystem simulation architecture provides

near complete independence of stand-alone subsimulations,

and naturally facilitates high fidelity and broad scope

through collaboration across interfaces that can be imple-
mented in the same physical and engineering terms that de-

fine them in the actual system. Such simplicity promotes

clarity of communication and ease of understanding, both of

which have many positive benefits. Individual sub-

simulations can potentially be implemented on separate,
remote, and dissimilar computational platforms, and this

portends numerous advantages and possibilities as computer

network capabilities improve.

II. RECURSIVE FEEDBACK ALGORITHM

A. Concept

Referring to Fig. 1, the subsystems are represented by

independent, self-contained, time-domain, dynamical simu-
lations that can be commanded to run from a given set of

initial conditions over a predetermined segment of time

when provided with input signals as functions of time over

that interval. In general, the time segment, also referred to

as a convergence interval, is short compared with the total
duration of the simulation, but may be significantly larger

than the integration step size associated with a typical sub-

system. For each new stage of recursion, revised subsystem
input signals are computed by summing system-level input
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Figure 1: Schematic of Recursive Feedback Process
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signals with current stage feedback (coupling) signals that

have been generated as if the loop were open. New subsys-

tem responses and feedback signals are computed using the

revised subsystem input signals in conjunction with original

initial conditions. The process is started by ignoring the

feedback signal and continues re.cursively until convergence
is achieved. After convergence, initial conditions are re-

placed with final conditions and the process is restarted for

the next segment of time. System response over the total
desired duration of the simulation is the concatenated set of

combined subsystem responses over many time segments.

B. Insights for Specific Design

Because Fig. 1 describes a system of considerable gen-

erality whose complexity for a specific case can range from
simple to great, further clarification of the process seems

appropriate. The simplest "system" could arguably be a

single integrator in the forward path, a constant multiplier

(gain) in the backward (feedback) path, no (zero) system-
level input, and a nonzero initial condition on the output. In

that case, there is one linear subsystem, and that subsystem

is a single integrator. The output function is the integral of

the subsystem-level input function with respect to time and
can be generated independently and directly by simply

computing area under the curve and adding the initial condi-

tion. The coupling matrix becomes a scalar (value of the

loop gain) andactually represents direct feedback rather

than coupling. T.he process, however, does not explicitly
make such a distinction, nor does it need to. The summing

junction becomes moot since there is no system-level input.

The point at which feedback data are transferred from one

stage to the next remains as depicted in Fig. 1 but does not

exist in the analog system to be digitally simulated. The

scalar differential equation that models the analog system is

p(t) =/cy(t), (1)

where t is time and k is the loop gain, and the exact closed-

form solution for the output response is given by the expo-
nential function

y(t) = y(0)[e _ ] , (2)

where y(0) represents the initial value of the output y(t).

Applying recursive feedback to this system, the output is

first computed as a function of time over the convergence
interval as if there were no (zero) feedback. This function is

referred to as the stage zero output response. Because the

system input function is zero for this example, the response

is simply a constant function of time symbolically repre-
sented by

y(O) (t) = y(O), (3)

where the parenthesized superscript is the stage index. Next,
the stage zero feedback function is computed by multiplying
the stage zero output response function by k. After "mov-

ing" the feedback function numerical data across the recur-
sire data transfer point (future stage to current stage in Fig.
1) and summing it with the system-level input function
(zero), it becomes the stage one sul_system input function.
Stage one response can now be computed by numerical in-
tegration of the new subsystem input function with applica-
tion of the original initial condition y(0). In the absence of
numerical error, symbolic representation of the result is

y O)(t) = y(O)[1 + kt]. (4)

Repeating the process, symbolic representation of the stage
two result is

y(2)(t) = y(0)[1 +kt + (kt)2 ], (5)
2

By induction, the nth stage response is given by

y(n)(t,= y(O)[1 + kt + _k_-_ + ... + (kt)nn! (6)

Clearly, if sufficiently continued, the symbolic recursive

process yields a solution that approaches the exact solution

(2). In theory, the time interval (convergence interval) for

this case can be as long as desired; in practice, it must be
restricted because of numerical integration and round-off
errors.

As another example, consider the "system" to be an un-

• damped oscillator governed by the scalar differential equa-
tion

y(t) + o)2y(t) = 0, (7)

where CO is the frequency of oscillation. A simulation of

this system by recursive feedback can be set up in at least

two very different ways. One design possibility is to define

a single subsystem, best described as a double integrator, or

two single integrators in series. The output function of the
subsystem is determined by integrating its input function

twice. The coupling matrix once again degenerates to a sca-

lar constant, -(,0 2, and the system input function is zero.

Assuming a nonzero initial condition y(0)on the output

(displacement), application of recursive feedback to this

system results in a truncated series definition of y(t), and

at the nth recursion stage, a symbolic representation is

I t2 12n 1
y(n)(t) = y(O) 1--09 2_+'''(-1)n60 2_ • (8)
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Then for a sufficiently large number of recursion stages, the

approximate solution approaches the exact solution

y(t) = y(0)[cos 0`3t]. (9)

Once again the number of terms in the series corresponds

directly to the number of recursion stages, but the order of

the series with respect to time is twice the number of recur-
sion stages.

In contrast_ a second design possibility is to define two

subsystems that are both single integrators. The governing

differential equation is now given by the two-dimensional

matrix-vector equation

I;'(t) = KY(t), (lO)

where thecouplingmatrixisgivenby

[0K=
_0.32

and the output function is given by

(11)

[ y_ (t) l

r(t)=LY2(OA')
(12)

where yl (t) represents displacement and y2 (t) represents

velocity. Application of re,cursive feedback to this system

results in a truncated series definition of Y(t). At the nth

recursion stage, the approximate system response function

is symbolically represented by

Again, each recursion stage, in effect, adds one term to the

truncated series approximation of the exact solution.

For the two-subsystem, twin-integrator approach, it
takes two recursion stages to reach the same order of ap-

proximation in time that was reached in one stage with the

single-subsystem, double-integrator approach. However, the

twin integrators represent independent operations that can

be numerically performed !n parallel, while the double inte-
grator represents either a single operation, or two operations

that must be performed in series. In the double integrator

case, velocity, _(t), does not appear at the system level,

only one function crosses the recursive data transfer point,

and only one function is available to be checked for conver-

gence at the system level. In the twin integrator case, veloc-

ity, Y2(t), appears at the system level, Yl(t)and

Y2 (t)both cross the recursive transfer point, and both

functions are available to be checked for convergence at the

system level. Clearly, in a more complex situation, the rela-

tive merits of these approaches become simulation design

and performance issues.

For the broaderrange of systems contained withinthe

framework of Fig.1,thenatureofthe couplingmatrixisa

functionof many possiblesimulationdesignchoices.In its

most basicform,a coupler(elementof thecouplingmatrix)

would simplyroutesignalsfrom one subsystem toanother

withoutmodifyingthem. Initsmost complex form,itcould

become a multidimensionalnonlinearoperatoras well.As

impliedby the double integratorexample when viewed as

two single-integratorsubsystemsinseries,itisalsopossible

to distributecoupling functionsthroughout the system.

Thus, the conceptof a couplingmatrix isnot essentialto

the process;itmay, however, be usefulinorganizationand

controlof a largesimulationat.thesystem level.In a par-

ticularsituation,one might choose toview severalsubsys-

tem simulationsasa singlecombined setwhen thenatureof

the couplingamong them issuch thatan outputresponse

can be determined directlyfrom an inputsignalwithout

necessityforrecursionamong members of theset.Typical

couplerfunctionsare likelyto be coordinatetransforma-

tions,gain multiplications,interpolations,and other data

modificationor routingtasksthatmust be performed to

make proper interfaceconnectionsamong a setof prede-

finedorexistingsubsimulations.

C. Convergence

To be of practical value in simulation of dynamical sys-

tems, the ability of the recursion process to achieve conver-
gence needs to be understood in a general sense so that rea-

sonable assurance of convergence can be provided for spe-

cific circumstances. The convergence issue has been ad-

dressed for some simple nonlinear examples as well as a

time-varying example in [1]. For the nonlinear examples,

each recursion stage adds higher order terms; but for a

given number of correct terms in the series expansion, a

greater number of recursionstagesisrequired.For these

systems, the convergence intervalcannot be arbitrarily

long,even withoutintegrationand round-offerrors,be-

cause theseriesbecomes divergent.The degreeof restric-

tionrequiredforconvergencedepends on theinitialcondi-
tion.

The analysisof [2] addresseslinearlycoupled subsys-

tems where the subsystemsare alsolinearbut aremultidi-

mensional. While subsystem output signalsare linearly

relatedtothe subsystemstates,thenumber ofoutputsignals
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may be less than the number of states. The recursive feed-

back process is analytically applied based only on inputs

and outputs to the subsystems, as depicted in Fig. 1. Be-

cause no algebraic feed-through of subsystem input signals

is allowed, the possibility of system-level algebraic loops is

excluded. However, the analysis of [3], though much less

straightforward, addresses a similar system with inclusion

of system-level algebraic loops.

From this work and other experience, it appears that

convergence can be achieved for a broad range of ordinary

systems simply by controlling the length of the conver-

gence interval. It is apparent, however, that this is not al-

ways the case. For example, systems with lower gain alge-

braic loops may converge, while those with higher gain

may not. The essence of this problem is illustrated by sub-

stituting a unit gain multiplication process for the integra-

tion process in the example system described by (1). This

creates a purely algebraic loop. After adding a nonzero in-

put function, analytical application of the re,cursive feed-

back algorithm generates a geometric series rather than an

exponential series, and cenvergence becomes conditional. It

should be noted that a nonconvergent system of this type
might also be physically untenable or not meaningful. The

"guarantees" and insights with respect to convergence that

come with analyses like that in [3] are weakened at best and

totally lost at worst without the linear model assumption.
However, one does have a guarantee of solution existence

and uniqueness for a broad range of sufficiently well be-

hayed nonlinear systems [4], and a converged recursive

feedback process is indicative of a solution with exception

of questions concerning discretization error, round-off er-

ror, inappropriate tolerances, etc. By shortening the length

of the convergence interval, the number of recursion stages

required to achieve convergence is normally decreased; or,
in a nonconvergent situation, the likelihood of convergence

is increased. The possibility exists for automatic in-process

control of ,the convergence interval length as well as the

number of recursion stages, not unlike control of stepsize
and choice of order in a conventional algorithm for numeri-

cal solution of differential equations.

HI. EXAMPLE SYSTEM

The example system consists of a satellite in low-Earth

orbit that is experiencing aerodynamic effects in addition to

gravitational effects. The spacecraft is idealized as a rigid
body of rectangular "box" shape, illustrated in Fig. 2. The

ceriter of mass is offset from the geometric center by a small
amount in all three axes, and moments of inertia are such

that there are two large but somewhat unequal principal

values, while the third principal value is much smaller. The

principal axes are normal to the box surfaces so that all

=oss products of inev_a are zero. The mode!s are based on
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Figure 2: Spacecraft Properties and Coordinate System

constant density atmosphere, "panel" aerodynamics, and
spherical Earth gravity. There is no attitude control, so the

body is allowed to tumble under the influence of gravity and
aerodynamics. Gravitational and aerodynamic torques affect

the rotational dynamics of the rigid body, while gravita-

tional and aerodynamic forces affect the translational dy-

namics. Both translational and rotational dynamics affect

aerodynamic forces and torques, so a natural (analog) feed-
back loop is apparent. This example fails in the general

category of nonlinear, continuous systems.

IV. INDIVIDUAL SUBSYSTEM SIMULATIONS

A. Orbit Dynamics

The orbit dynamics simulation input signal is aerody-

namic force, and output signals are orbit radius and velocity

vectors. All orbit dynamics simulation variables are refer-

enced to an Earth-centered inertial coordinate system as

defined in Fig. 3. The underlying mathematical model, of
the type found in [5], is represented by

msat dr2

and

(14)

Fgrav = GmEarthmsat _ (15)
R 3

is the universal gravitational constant, mEarth

are masses of the Earth and satellite, and /_ is

where G

and rosat

the orbitradiusvector.]_extendsfrom the centerof the

Earth to the centerof mass of the satellite.Facto isthe

aerodynamic force,and isderivedfrom outputofthe aero-

dynamics subsystem simulation.After rearrangement to

fast-orderform (sixstates),numerical solutionof (14) is

accomplishedwith a fourth-order,fixed-stepRunge-Kutta

algorithm. Details of the formulation are given in [6].
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Figure 3: InertialCoordinate System and

InitialOrbit Plane Geometry

B. Attitude Dynamics

Input signals for the attitude dynamics model are orbit

radius vector expressed in inertial coordinates, and aerody-

namic torque expressed in body coordinates. The body co-
ordinate system is the same as the geometric coordinate

system defined in Fig. 2 except that its origin is at the center

of mass of the spacecraft. Output signals are body rates and

attitude angles. The mathematical model, of the type found

in [5], represents rotational motion of a rigid body, and is

defined by

/ "c° + chxl "ch = 7_gg+Lcro , (16)

where I is the moment of inertia matrix, and D is the angu-

lar velocity vector associated with the body frame. 7_gg, the

gravity gradient torque, is given by [7]

GmEarth

Tgg = R3 _xI.P, (17)

where _ is a unit vector corresponding to /_ expressed in

body coordinates. Tacro, the aerodynamic torque, is derived

from output of the aerodynamics subsystem simulation.

F_xluation (16) is solved using an Euler angle formulation of

the kinematics followed by rearrangement to first-order
form (six states) and numerical integration by Runge-Kutta.

Attitude angles of Z-Y-X Euler rotation sequence define

body frame orientation with respect to the inertial frame.
Details of the formulation are given in [6].

C. Aerodynamics

The aerodynamicssimulationinputsignalsare orbitra-

diusvectorininertialcoordinatesand orbitvelocityvector

inbody coordinates.Output signalsare aerodynamic force

and torqueexpressedingeometriccoordinates.The space-

craftismodeled as a box with sixrectangularsidepanels

(Fig. 2). Drag force for the ith panel is defined empirically

by [7]

El'- 2Cd_.(ni.Q)v if r_.a3___0 , (18)

0 if fi._3 =0

where p is atmospheric density, V is velocity magnitude

relative to the atmosphere, C d is a drag coefficient, A is

panel area, _ is a unit vector normal to the panel and di-

rected outward from the box, and _ is a unit vector corre-

sponding to V expressed in geometric coordinates. Because

rotation of the Earth is neglected, no distinction between

relative and absolute velocity is made. The total aerody-

namic force is given by

_ _'_ 6 /_ .
- ZZq=l i (19)

The aerodynamic torque about the geometric center of

the box is given by
6

i=1

where Fopi i._a vector directed from the origin of the geo-

metric coordinate system to the center of pressure of the ith

panel. Finally, /_aero, as required in (16), is given by

f,=o

where rcra is a vector directed from the geometric center of

the spacecraft to its center of mass. Equation (21) is not
contained within the aerodynamics subsystem simulation,

but is implemented as a coupler function,

V. SYSTEM SIMULATION STRUCTURES

Three system-level simulations of different structure have

been built. The first simulation, illustrated in Fig. 4, uses an
implementation of recursive feedback with centralized cou-

pling, while a second simulation, illustrated in Fig. 5, uses

distributed coupling. The third simulation uses a conven-

tional fn'st-order, single-equation-set approach and is the

standard against which the recursive feedback approaches

are compared. For the distributively coupled simulation, the
subsystems have been arranged so that, to the extent possi-
ble, feedback is minimized. Because there is an information

loop that ultimately must be closed, it is not possible to

completely eliminate feedback. The subsimulations are

identical to those of the centrally coupled system, but the

system-level numerical process is. substantially affected be-

cause, among other things, the number of scalar signal paths

that cross the recursive transfer point has changed.
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Figure 4: Centrally Coupled Simulation Diagram

Simulations for each of the three subsystems have been

constructed as functionally separate entities and combined

within the framework of a single FORTRAN computer pro-

gram that couples them by way of a recursive feedback

process. Input and output signals (functions of time) are

representesi" by a sequence of linearly connected points
equally spaced in time, and additional points are obtained

through interpolation by each simulation, if needed. The

orbit dynamics and attitude dynamics simulations have

separate nufaerical integration processes, while the aerody-

namics simulation has no integration process because the
model is purely logical-algebraic. All three simulations are

"stand-alone" because each, in principle, is capable of pro-

ducing output signals from input signals and initial condi-

tions. Initial conditions, of course, do not apply to the aero-
dynamic simulation because no integration is involved. The

conventional simulation is implemented from the combined

set of equations that define the subsystem models. They

have been collected and rearranged, by hand, to a single set
of 12 first-order differential equations, an arrangement

sometimes called a "state variables" approach to system
formulation. In that context, the state vector is defined as

Figure 5: Distributively Coupled Simulation Diagram

x:E lvl , (22)

where R ,V ,_ and ,{2 are three-element row vectors

representing orbit radius, velocity, attitude angles, and body
rates. The system differential equations can now be repre-

sented as a first-order set by

= f(X) . (23)

A fourth-order, fixed-step Runge-Kutta numerical integra-

tion algorithm specifically designed to solve systems in the

form of (13) is employed to propagate the system re-

sponses.

IV. NUMERICAL RESULTS

A. Definition of &e Run Case

Spacecraft mass properties, dimensions, and aerody-
namic data are specified in Fig 2. Initial attitude angles and

body rates are zero. The orbit is initialized so that in the

absence of aerodynamic drag it would be circular at an alti-

tude of 300 km and an inclination of 30 deg. The orbit ini-

tialization point is in the X-Z plane of the coordinate sys-

tem shown in Fig. 3. The spacecraft is allowed to tumble
under the influence of gravity and aerodynamics for a time

period of 60,000 see, or about 11 orbital revolutions.

Algorithm parameters in both recursive method simula-
tions were set to use five sample points per convergence

interval (including both end points), and the interval length

was 0.4 see. Root mean square normalized and absolute

convergence error tolerances were 10 -12 for the cenirally

coupled case and 10 -_4 for the distributively coupled case.

The integration step size for the orbit and attitude dynamics

sub-simulations was 0.1 see, and the aerodynamics sub-

simulation computed aerodynamic effects at a 0.1-see sam-

ple interval. Integration step size for the conventional simu-
lation was also 0.1 see.

B. Comparison of Responses

Responses from all the simulations agree for about

45,000 see of the 60,000-sec duration. After that, the recur-

sire method responses begin to diverge from the conven-
tional method. However, the recursive methods continue to

agree with each other for the full 60,000 see. Figs. 6-12

present plots of time segments specifically selected to illus-

Irate the early agreement and subsequent deviation of re-

sponses. Attitude angles are shown in Figs. 6-8, body
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Figure 9: X-Axis Body Rate vs. Time
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Figure 7: Y-Axis Attitude Angle vs. Time
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Figure 10: Y-Axis Body Rate vs. Time
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Figure 11: Z-Axis Body Rate vs. Time
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Figure 12: Altitude vs. Time
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rates are shown in Figs. 9-11, and altitude is shown for the

final 1000 sec in Fig. 12. Deviations are attributed primarily

to the fact that aerodynamic forces and torques are linearly
interpolated over the subsimulation integration step size in

the recursive methods, while they are computed at points

internal to the integration interval in the conventional im-

plementation. Improvement could likely be found through a

more sophisticated interpolation method, a shorter conver-

gence interval, or an increased number of points per con-
vergence interval for signal definition. It must be remem-

bered, however, that eventual disagreement of dynamical

simulations driven by different numerical processes is al-

ways expected. Additional cases involving two- and three-

axis attitude control were studied in [6], and no significant
deviation became apparent for the full 60,000 sec duration.

C. Performance

For the example presented, the recursive methods were

slower than the conventional method by a factor of 4 to 6
depending mainly on the coupling approach. The centrally

coupled version was slowest, but no advantage of the pos-

sibility for parallel execution of subsystem simulations was

taken in the current single-computer implementation. A

multiplafform (or multiprocessor) implementation could
naturally take such advantage; however, that possibility

does not exist in the distributively coupled version. In the

recursive methods, response at the latest stage is compared
with response from the previous stage to determine conver-

gence with respect to a set of error tolerances. In the con-

ventional method, no active control of error is present, and

inclusion of such a mechanism would require additional

computation. Conversely, predetermination of the number

of recursion stages and elimination of the convergence

check could significantly reduce the computation load for

the recursive methods. While it is recognized that speed is

important, none of the simulations were refined for effi-

ciency, and it is believed that many advantages of the re-

cursive f_dback approach lie elsewhere.

VI. SUMMARY AND CONCLUSIONS

An example nonlinear, continuous simulation of satellite
motion has been successfully constructed using two varia-

tions of recursive feedback to couple three separate sub-

simulations of orbit dynamics, attitude dynamics, and aero-

dynamics. Results have been verified by direct comparison

with a conventionally constructed simulation of the same

system. Each subsimulation deals with one engineering dis-

cipline, and appropriate interactions are implemented recur-

sively at the system level• The subsimulations can, in prin-

ciple, be run separately on remote and dissimilar platforms
while coupling is implemented by way of network. The sys-

tem simulation can be designed so that coupling signals

represent physically identifiable variables associated with

physical interfaces among the subsystems. The example
employs three subsimulations; the method framework ac-

commodates an arbitrary number. Clearly, further investiga-

tion of recursively coupled subsimulations as a multi-

discpline system simulation architecture is warranted.
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